
Compiler-Agnostic Function Detection in Binaries

Dennis Andriesse˚:, Asia Slowinska;, Herbert Bos˚:

˚{d.a.andriesse,h.j.bos}@vu.nl
Computer Science Institute, Vrije Universiteit Amsterdam

:Amsterdam Department of Informatics
;asia.slowinska@gmail.com

Abstract—We propose Nucleus, a novel function de-

tection algorithm for binaries. In contrast to prior

work, Nucleus is compiler-agnostic, and does not re-

quire any learning phase or signature information.

Instead of scanning for signatures, Nucleus detects

functions at the Control Flow Graph-level, making

it inherently suitable for difficult cases such as non-

contiguous or multi-entry functions. We evaluate Nu-

cleus on a diverse set of 476 C and C++ binaries,

compiled with gcc, clang and Visual Studio for x86

and x64, at optimization levels O0–O3. We achieve

consistently good performance, with a mean F-score

of 0.95.

1. Introduction

Function detection is a binary analysis technique
that categorizes the code within a binary into functions
approximating the original (source-level) functions. It
is a key building block in areas like binary instrumen-
tation [1], [2], binary-level vulnerability search [3], [4],
and binary protection schemes, including Control-Flow
Integrity [5]–[8]. Moreover, accurate function detection
is crucial for human reverse engineers, who rely on
such compartmentalization to aid their reasoning about
complex binary code.

Related work shows that while modern disassemblers
and binary analysis platforms achieve high accuracy in
terms of instruction recovery, their function detection
capabilities are still lacking [9]. For instance, for stripped
x64 ELF binaries generated with the common gcc com-
piler, our results show that the prominent IDA Pro
disassembler misidentifies 25% to 40% (depending on
optimization level) of functions on average, and up to
75% in the worst case. Moreover, up to 20% of the re-
ported functions are false positives. Other disassemblers,
such as Dyninst [2] and BAP [10], deliver comparable or
worse performance.

The predominant approach to the function detec-
tion problem is to use a signature database to scan
binaries for known function prologues and epilogues.
This approach is used even in state-of-the-art work like
ByteWeight, which uses machine learning to automat-

ically generate signatures [11], [12]. While signature-
based function detection can achieve reasonable accu-
racy for unoptimized binaries, its performance declines
steeply for highly optimized binaries, where standard
function prologues are often missing altogether. More-
over, signature databases require constant maintenance,
to support new compilers and compiler versions.

This paper proposes a new signature-less approach
to function detection for stripped binaries, based on
structural Control Flow Graph analysis. We provide an
open-source implementation of our approach, called Nu-
cleus.1 Rather than scanning binaries for signatures,
Nucleus is centered around an Interprocedural Control
Flow Graph (ICFG), which it constructs by disassem-
bling a binary and analyzing its control flow. Nucleus
identifies functions in the ICFG by analyzing the control
flow between basic blocks, based on our observation
that intraprocedural control flow tends to use different
types and patterns of control flow instructions than
interprocedural control flow. We show that this prop-
erty holds across different compilers and optimization
levels, allowing Nucleus to identify functions in a com-
pletely compiler-agnostic way, without any compiler-
specific signatures or heuristics. Nucleus also inherently
supports difficult cases like non-contiguous and multi-
entry functions. Nucleus can export its results directly
to the popular IDA Pro disassembler, making it easy to
use in real-world scenarios.

We evaluate Nucleus on a diverse set of 476 binaries,
which includes binaries compiled with gcc, clang and
Visual Studio for both Linux (ELF) and Windows (PE).
Our evaluation covers both C and C++ code, compiled
for x86 (32-bit) and x64 (64-bit), at optimization levels
ranging from O0 to O3. Nucleus achieves mean precision
and recall rates of 0.96 and 0.94, respectively; consis-
tently outperforming IDA Pro and Dyninst, and match-
ing the reported accuracy of state-of-the-art machine
learning-based work [11], [12].

Further, our evaluation reveals a significant discrep-
ancy between the accuracy reported for these machine
learning approaches (specifically ByteWeight [11]), and
the results they deliver in our tests. Upon closer analysis,

1. https://www.vusec.net/projects/function-detection/

https://www.vusec.net/projects/function-detection/

we find a large overlap between the training set and test
set used to evaluate all top-tier work on machine learn-
ing for function detection, including ByteWeight [11],
[12]. We show that this leads to a large bias in the
evaluations for these papers, underlining the need for
future work to reassess the viability of machine learning
for function detection.

1.1. Contributions

Summarizing, our contributions are as follows.

‚ We introduce Nucleus, a novel compiler-agnostic
function detection engine. Nucleus achieves high
accuracy for all major compilers and platforms,
without requiring any of the compiler-specific sig-
natures used by current state-of-the-art algorithms.

‚ Nucleus is open source, and is easy to use in real-
world environments due to its ability to integrate
with IDA Pro, the industry-standard disassembler.

‚ In contrast to prior work, Nucleus can support new
compilers without any training or maintenance.

‚ Nucleus provides inherent support for difficult
cases, such as non-contiguous and multi-entry func-
tions, without assuming anything about the mem-
ory or instruction layout of functions.

‚ We find a strong bias in the evaluations of top-tier
work on machine learning-based function detection,
demonstrating that these techniques need to be
reassessed before the accuracy reported in their
evaluations can be assumed to generalize.

1.2. Outline

The rest of this paper is organized as follows. First,
we discuss the background of function detection in Sec-
tion 2. Next, we provide an overview of Nucleus in Sec-
tion 3, and discuss implementation details in Section 4.
We evaluate the accuracy and performance of Nucleus
in Section 5. In Section 6, we qualify our comparison
of Nucleus with top-tier machine learning-based work
by analysing in-depth the test suite used to evaluate
this work. We discuss the implications of our results in
Section 7, and contrast our approach to related work
in Section 8. Finally, we present our conclusions in
Section 9.

2. Background

This section provides a brief introduction to function
detection. We discuss the definition and scope of the
function detection problem, as well as challenging cases
which need to be handled.

2.1. Definition of Function Detection

Function detection comprises two main problems:
function start detection, and function boundary detec-
tion. In function start detection, the aim is to find all

addresses in a binary that correspond to a function entry
point, while function boundary detection attempts to
find both the first and last address of each function. Our
definitions of these are analogous to the definitions by
Bao et al. [11].

We use these definitions to compare Nucleus to exist-
ing approaches in our evaluation (Section 5). However,
Nucleus is not limited to detecting only function start
and end addresses; as discussed in Section 3, Nucleus
assigns all basic blocks to their containing functions.

(1) Function start detection: Given a binary P
compiled from a set of source-level functions F :“
tf1, f2, . . . , fmu, identify a set of start addresses S :“
ts1, s2, . . . , snu in P such that si points to the machine
instruction corresponding to the first line (entry point)
of some fj P F . Note that for stripped binaries, F
is not known to the function detector. Given a set of
ground truth start addresses Sgt, we define the set of
true positives as TP :“ S X Sgt, false positives as
FP :“ SzSgt and false negatives as FN :“ SgtzS.

(2) Function boundary detection: Given the same
binary P compiled from functions in F , iden-
tify a set of (start, end) address pairs B :“
tps1, e1q, ps2, e2q, . . . , psn, enqu in P such that si is the
function start address of fj P F and ei is the last address
in P corresponding to a line from fj . Given again a set
of ground truth function boundaries Bgt, we define the
set of true positives as TP :“ B X Bgt, false positives as
FP :“ tps, eq | ps, eq P B ^ s R Sgtu, and false negatives
as FN :“ BgtzB. Note that this implies that for TP ,
both the function start and end address must be correct;
if either is incorrect this counts for FN .

2.2. Scope of Function Detection

For binaries with symbolic information, function de-
tection is trivial—the symbol table specifies the set
of functions, along with their names, start addresses,
and sizes. Unfortunately, many binaries in practice are
stripped of this information. This makes function detec-
tion far more challenging—source-level functions have
no real meaning at the binary level, and their bound-
aries are frequently blurred by compiler optimizations.
Nucleus, like other work on function detection [2], [11]–
[13], focuses on stripped binaries.

Though challenging, function detection in stripped
binaries is important in virtually all forms of binary
reverse engineering. Human reverse engineers often deal
with stripped binaries, especially in malware analysis or
security auditing of untrusted binaries [13], [14]. Decom-
pilers attempt to facilitate human reverse engineering by
deriving a high-level code representation from binaries,
also operating at the function level [15], [16].

Automated reverse engineering and binary instru-
mentation systems also rely on accurate function de-
tection for stripped binaries, such as legacy binaries or
binaries for embedded systems (which are often stripped
to save memory). For instance, Control Flow Integrity

mechanisms often reason about security at the function
level [5], [7], [8]. Moreover, automated bug detection sys-
tems [3], [4] and binary-level reoptimizers also commonly
reason at the function level [17].

2.3. Signature-Based Approaches

The predominant strategy for function detection is
based on signatures. This strategy is used in all well-
known approaches, including IDA Pro [13], Dyninst [2]
and machine learning approaches like ByteWeight [11]
or Neural Network-based function detection [12].

Typically, signature-based function detection algo-
rithms start with a pass over the disassembled binary
to locate trivial functions that are directly addressed by
a call instruction. To locate the remaining functions
(such as indirectly called or tailcalled functions), these
approaches scan for well-known signatures that indicate
function prologues and epilogues. For instance, a typ-
ical pattern that many x86 compilers emit for unop-
timized functions starts with the prologue push ebp;

mov ebp,esp, and ends with the epilogue leave; ret.
In practice, many more patterns are used, depending on
the platform, compiler, and optimization level. Indeed,
optimized functions may not have well-known function
prologues or epilogues at all.

This wide variety of function patterns and calling
conventions is a major problem for the scalability of
signature-based function detection. Signature databases
need to account for all these possibilities, and need
constant maintenance to account for new platforms,
compilers and compiler versions. Recent work by Bao et
al. [11] and Shin et al. [12] has focused on automating
the process of learning new function signatures. How-
ever, these approaches still require signatures tuned for
specific compilers and an expensive learning phase for
every configuration change. The scalability problems are
especially apparent for open-source projects like GNU
gcc and llvm/clang, which release new major versions
roughly every six months, and minor versions with even
higher frequency.2,3

2.4. Challenging Cases

We distinguish several constructs which are challeng-
ing for function detection. Typically, these result from
compiler optimizations. Here, we provide a high-level
overview of challenging constructs, while Sections 3–7
provide real-world examples, and discuss how Nucleus
handles them. Nucleus successfully handles all of the
cases discussed below, except where noted otherwise. We
also provide a detailed discussion of cases not handled
by Nucleus in Section 5.3.

(1) Non-contiguous functions: Many disassemblers,
including IDA Pro, assume that each function is laid out

2. https://gcc.gnu.org/releases.html
3. http://llvm.org/releases/

in a single contiguous memory range. This assumption is
convenient for signature-based function detection, which
works by scanning for a function prologue and epilogue.
Depending on the compiler and optimization, functions
may instead consist of multiple disjoint memory ranges,
which require deeper analysis to be associated with the
correct function.

(2) Multi-entry functions: Instead of a single en-
try point, a function may have multiple alterna-
tive entry points. For instance, glibc defines the
splice function, which has an alternative entry called

splice nocancel that may be called depending on
whether thread safety is required. Function detectors
which do not consider this may misclassify each alter-
native entry block as a separate function.

(3) Padding code and inline data: Especially at high
optimization levels, modern compilers add padding code
between functions, and even between basic blocks within
a function. This code is not intended to be executed,
but to align functions and basic blocks in memory so
they can be accessed with optimal efficiency. In addition,
compilers like Visual Studio intersperse data, such as
jump tables, within code sections. Thus, function de-
tectors must avoid inadvertently identifying padding or
data as (part of) a function.

(4) Unreachable code: Recursive disassemblers like
IDA Pro and Dyninst follow control flow to discover
code. While this approach works well for separating code
from data, it cannot discover functions that are never
called, or are only called indirectly.

(5) Tail calls: In this common optimization, a func-
tion ends not with a return, but with a jump to another
function. This makes it more difficult to detect where the
optimized function ends. As we discuss in Section 5.3,
this case requires dedicated handling by Nucleus.

(6) Alternative prologues/epilogues: Signature-based
function detection tends to misidentify functions that
use an unrecognized calling convention, or lack standard
prologues and epilogues altogether (common in opti-
mized code).

3. Overview

This section provides a high-level overview of our
function detection algorithm. Implementation details are
provided in Section 4. The main steps of our algorithm
are illustrated in Figure 1.

Though our approach is conceptually simple, we
show in Section 5 that it is able to detect both func-
tion starts and function boundaries with very high
accuracy. Moreover, our evaluation shows consistently
good results across multiple instruction sets, compilers
and platforms, without requiring any compiler-specific
heuristics. Additionally, in contrast to signature-based
approaches, our analysis yields the complete set of basic
blocks belonging to each function, rather than only a
start and end address.

https://gcc.gnu.org/releases.html
http://llvm.org/releases/

c
a
l
l

1 2 3

f
1

f
2

f
3

4

f
1

f
2

f
3

f
4

Figure 1: Overview of our function detection algorithm. 1© Disassemble binary and generate ICFG.
2© Hide edges e P Ecall. 3© Locate directly called entry points (shaded blue) and expand functions by

following control flow (ignoring direction). 4© Find remaining functions through connected components
analysis and detect entry points through intraprocedural control flow analysis.

3.1. ICFG Generation

We start by generating the Interprocedural Control
Flow Graph (ICFG) around which the rest of our anal-
ysis is centered (step 1© in Figure 1). The ICFG for
a binary B is a digraph G “ pV, Eq, where V is the
set of all basic blocks in B, and E is the set of control
flow edges E Ď V ˆ V between basic blocks. E includes
both intraprocedural and interprocedural edges (such as
call edges). In contrast, the traditional definition of
a (non-interprocedural) Control Flow Graph (CFG) is
a function-level data structure that contains only the
basic blocks and edges within a particular function.
We operate on the ICFG because it can be generated
without a priori knowledge of function boundaries. We
generate the ICFG by disassembling the target binary,
dividing it into basic blocks, and analyzing its control
flow (see Section 4 for details).

To improve the accuracy of our analysis, we per-
form some preprocessing on the ICFG. Specifically, we
use switch detection to resolve intraprocedural indirect
jumps, and we use a combination of semantic analysis
and reachability analysis to identify padding blocks and
inline data. More details on our preprocessing algorithm
are given in Section 4.

3.2. Connected Components Analysis

Next, we perform a weakly connected components
analysis on the ICFG, temporarily excluding the call

edges e P Ecall (step 2©). A weakly connected component
is a subgraph of the ICFG, in which every two vertices
are connected by an undirected path (i.e., ignoring the
direction of control flow), and no vertex is connected to a
vertex outside the component. By excluding call edges,
the analysis finds all graph components that consist
of basic blocks connected through only intraprocedural
edges (some corner cases do exist; these are discussed
in Section 5.3). In other words, we use the connected

components analysis to find clusters of basic blocks, such
that (ideally) each cluster contains all blocks belonging
to a single function.

Note that this approach assumes nothing about the
memory layout of functions, thus providing natural sup-
port for non-contiguous functions. Moreover, it does
not require any kind of function prologue or epilogue
detection (signature-based or otherwise), making our
approach completely compiler agnostic. Our connected
components analysis consists of several phases, as de-
scribed below.

3.2.1. Directly Called Functions. First, we make a
pass over the instructions of all basic blocks in the ICFG,
scanning for direct call instructions. This allows us to
detect the directly called function entry blocks, which we
each expand into a complete function by following the
edges from the entry block until a complete component
is formed (step 3©). This phase detects all components
corresponding to directly called functions.

3.2.2. Unreachable/Indirectly Called Functions.
Next, we find indirectly called or unreachable functions
by iterating over all basic blocks in the ICFG, looking
for basic blocks that are not yet part of a function
(step 4©). We expand each such block into a function
using the aforementioned connected components anal-
ysis. Subsequently, we detect the function entry points
by scanning the function for basic blocks that are not
reached by any intraprocedural edge. (In practice, there
may be loopback edges to an entry block; we describe
our approach to dealing with these in Section 4.) We
perform the same entry point analysis for the directly
called functions, to detect possible multi-entry functions.
If no suitable entry point can be found through other
methods, our analysis assumes the function is entered at
its lowest address (the default assumption in signature-
based approaches).

Listing 1 Effective nop instructions emitted by gcc

v5.1.1 on x86. eax can be replaced by any general
purpose register.

mov eax,eax
xchg eax,eax
lea eax,[eax + 0x0]
lea eax,[eax + eiz*1 + 0x0]

4. Implementation

We implemented an open-source version of our func-
tion detection algorithm, called Nucleus, in 3278 C++

SLOC.The ICFG construction and function detection
code consists of under 850 SLOC, while the remaining
lines are attributed to our binary loader, disassembler,
and utility code. We implemented a custom disassembly
pass using Capstone v3.0.4 for instruction parsing [18].
Nucleus integrates with IDA Pro (the industry standard
disassembler) by providing the option to generate an
IDA Pro script that imports our function detection re-
sults into IDA Pro. This makes Nucleus straightforward
to use in real-world environments.

4.1. Disassembly and ICFG Generation

To find indirectly called and unreachable functions,
we use a linear disassembly approach, coupled with an
analysis to detect padding code and inline data. Recent
work has shown that linear disassembly, even with only
simple detection of padding or data, can reliably achieve
high code coverage with few disassembly errors [9]. After
disassembly completes, Nucleus constructs the ICFG
by breaking the code into basic blocks, and creating
the control flow edges associated with each control flow
instruction.

We then analyze each basic block to see if it consists
of nop instructions or other do-nothing instructions,
used for padding. Simply checking for nop instructions
is not enough, because not all compilers use well-known
nop instructions for padding. We therefore implement
additional checks that look for instructions which move a
source operand into a destination operand without mod-
ifying it. Listing 1 shows examples of such instructions,
used for padding by gcc v5.1.1 on x86.

Moreover, we use reachability analysis to determine
if a nop block is part of a function (reachable), or
is padding (not reachable). We detect inline data by
looking for basic blocks that contain invalid or privileged
instructions. These blocks, and any basic blocks that can
reach them via a jump or fallthrough edge, are marked
as suspected data.

4.2. Switch Detection

Compilers typically implement switch statements as
an indirect jump that selects its target from a jump table
of code pointers, depending on which case should be
executed. To correctly attribute all switch/case blocks

to their associated function, we need to resolve these
intraprocedural indirect jumps. Nucleus therefore imple-
ments a switch detection pass that performs a backward
sweep starting from every indirect jump, looking for the
instruction where the jump’s target register is loaded.
If this load instruction references a jump table, we scan
this table for valid code pointers, adding these as targets
of the indirect jump. More sophisticated switch detec-
tion is explored in related work [13], [19], [20], but is
outside the scope of this work.

4.3. Function and Entry Point Detection

After ICFG generation is complete, we execute our
connected components-based function detection algo-
rithm as described in Section 3. As noted in Section 3,
we implement several ways of detecting function entry
points (in order of priority): (1) by following direct call

edges, (2) using intraprocedural control flow analysis,
and (3) by assuming the function’s lowest address as
the entry point (as a last resort).

The intraprocedural control flow analysis detects
function entry points by looking for basic blocks that are
not reached by any intraprocedural edge. However, we
must also deal with entry blocks which do have incoming
loopback edges. Such entry blocks can be identified in
two ways: (1) Loopback edges typically target not the
start of an entry block, but jump to an offset within it
(skipping past the function prologue). Because Nucleus
tracks the destination offset of each edge, we can identify
these cases. (2) Alternatively, we use intraprocedural
loop detection to determine that the entry block is
reached only via a loopback edge (while the source of the
loopback edge is also reached by other inbound control
flow edges).

5. Evaluation

In this section, we evaluate four key aspects of
Nucleus. (1) How accurate are our function detection
results compared to existing work? (2) Does Nucleus
achieve more stable cross-compiler/cross-architecture
results than other approaches? (3) Which particular
cases are handled well by Nucleus, and which cases
cause false positives or false negatives? (4) How does
the runtime performance of Nucleus compare to other
approaches? We first describe our test setup, and then
address each of these questions.

5.1. Test Setup

We evaluate Nucleus on a test suite consisting of 476
C and C++ binaries for x86 and x64—the most com-
monly targeted platforms in binary analysis research.
Our test suite contains both Linux (ELF) and Windows
(PE) binaries, compiled at optimization levels O0–O3.
The ELF binaries are compiled with the popular gcc

v5.1.1 and clang v3.7.0 compilers, while the PE binaries
are compiled with Visual Studio 2015—these are the
most recent versions at the time of our experiments. All
of the binaries are stripped of any symbolic information.

Our test suite contains the SPEC CPU2006 C and
C++ benchmarks, as well as the popular server applica-
tions nginx v1.8.0, lighttpd v1.4.39, opensshd v7.1p2,
vsftpd v3.0.3 and exim v4.86. We choose this test suite
for several reasons: (1) It contains a diverse range of
realistic C and C++ binaries, ranging from very small to
large; (2) By testing with C and C++, as well x86 and
x64 binaries, we cover a wide range of both stack-based
and register-based function calling conventions; (3) The
tested binaries contain a wide variety of challenging
corner cases—for instance, perlbench is known for con-
taining many indirect function calls; (4) SPEC CPU2006
compiles on both Linux and Windows, allowing a fair
comparison between gcc, clang, and Visual Studio.

We obtain ground truth on function starts and func-
tion boundaries by compiling the ELF binaries with
full symbolic and DWARF v3 information, and the PE
binaries with full PDB (Program Database) files. After
parsing the required function information from these
sources, we strip the binaries of all symbolic information
before using them in our experiments.

We conduct our experiments on an Intel Core i5
4300U machine with 8GB of RAM, running Ubuntu
15.04. We compile our gcc and clang test cases on this
same machine. The Visual Studio binaries are compiled
on an Intel Core i7 3770 machine with 8GB of RAM,
running Windows 10.

We compare Nucleus with IDA Pro v6.7, Dyninst
v9.1.0 [2], and BAP v0.9.9 [10], which uses ByteWeight
v0.9.9 [11] to obtain function start information. We
choose these tools because they are capable of delivering
both function start and function boundary information,
are widely used, and are also used as a reference in the
evaluations of related work [11]. Moreover, in Section 6,
we provide a more detailed comparison with the results
yielded by state-of-the-art machine learning-based ap-
proaches, including ByteWeight [11] and Shin et al. [12].

5.2. Function Detection Results

We report our experimental results using the F-score
metric, and the related notions of precision and recall.
The F-score is widely used (also in related work [11],
[12]) because it provides a combined metric of the true
positive, false positive and false negative rates of a sys-
tem. Precision is defined as p “ |TP | { p|TP | ` |FP | q,
while recall is defined as r “ |TP | { p|TP | ` |FN | q. For
us, p “ 1.0 means that all reported functions are true
positives (no false positives), while r “ 1.0 means that
there are no false negatives. The F-score is the harmonic
mean of precision and recall: F “ 2 ¨ p ¨ r{ pp ` rq. The
range of the F-score is again r0.0, 1.0s, with F “ 1.0
denoting perfect accuracy (neither false positives nor
false negatives).

In our Linux-based testing environment, Dyninst was
unable to process PE binaries. We therefore report only
ELF results for Dyninst. As our server applications are
Linux-specific, we test them only for gcc and clang.

5.2.1. Function Starts. We begin by discussing re-
sults for function start detection; results for function
boundary detection are discussed in Section 5.2.2. Fig-
ure 2 shows the F-scores achieved by Nucleus and the
other approaches per platform (x86 versus x64), com-
piler, and optimization level, differentiating between the
C and C++ tests. For each case, the graph shows the
geometric mean result achieved for SPEC CPU2006.
Additionally, Table 1 shows the decomposition of the
F-scores into precision and recall rates, for both the
SPEC and server tests. For space reasons, Table 1 shows
average scores taken over the geometric means for all
optimization levels.

Figure 2 shows that Nucleus achieves accurate results
across all compilers, platforms and optimization levels.
We achieve an overall average F-score for SPEC of 0.96,
ranging between 0.92 (O3) and a perfect F-score of 1.00
(O0) for the C tests, and between 0.87 and 0.99 for C++.
As shown in Table 1, Nucleus consistently outperforms
all other disassemblers, especially in terms of recall, with
the exception of Visual Studio on x64. Although Nucleus
delivers accurate results for Visual Studio x64, IDA Pro
is the most accurate for this compiler, with an average
F-score of 0.97. This is due to the fact that for x64,
Visual Studio 2015 uses only one calling convention [21],
making IDA Pro’s signature-based approach extremely
effective. In contrast, other compilers use a variety of
calling conventions.

As can be seen in Figure 2, Nucleus is more tolerant
of varying compilers and optimization levels than other
approaches, since Nucleus is compiler-agnostic. Nucleus
shows stable accuracy across compilers and architec-
tures, and the decrease in accuracy for high optimization
levels is far less significant than for all other tested
function detectors. In Section 5.3, we provide a detailed
discussion of the specific challenging cases which occur
in optimized binaries.

The standard deviations in F-score for Nucleus are
limited to the range r0.01, 0.04s for C, and r0.00, 0.07s
for C++. In contrast, deviations for IDA Pro range
from r0.00, 0.13s for C (with deviations below 0.11 only
occurring for Visual Studio), to r0.00, 0.19s for C++.
Dyninst standard deviations range from r0.01, 0.14s for
C to r0.01, 0.16s for C++, while BAP/ByteWeight ranges
from r0.04, 0.16s for C to r0.02, 0.26s for C++. Again,
this shows that Nucleus provides accurate results more
consistently than signature-based approaches.

The results shown in Figure 2 and Table 1 for
ByteWeight are based on the open-source ByteWeight
version shipped with BAP v0.9.9, which we refer to
as BAP/ByteWeight v0.9.9. BAP uses ByteWeight to
detect function starts, which it uses as starting points
for disassembly. We tested BAP/ByteWeight with the

0.0

0.2

0.4

0.6

0.8

1.0

O0 O1 O2 O3

f-
s
c
o

re

gcc-5.1.1 x86

Nucleus

Dyninst 9.1.0

BAP/ByteWeight 0.9.9

IDA Pro 6.7

C

C++

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure 2: F-scores for function start detection (geometric mean for SPEC CPU2006).

0.0

0.2

0.4

0.6

0.8

1.0

O0 O1 O2 O3

f-
s
c
o

re

gcc-5.1.1 x86

Nucleus

Dyninst 9.1.0

BAP/ByteWeight 0.9.9

IDA Pro 6.7

C

C++

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure 3: F-scores for function boundary detection (geometric mean for SPEC CPU2006).

default ELF/PE signatures that are included with it. In
our tests, BAP/ByteWeight achieves significantly lower
accuracy than the other approaches, with an overall
mean F-score of only 0.65, which is 0.32 points lower
than reported in the Byteweight paper [11]. Results for
the server tests (which do not include C++ binaries)
are more accurate, at a mean F-score of 0.75, but this
is still 0.22 points lower than expected. Note that for
BAP/ByteWeight, we excluded xalancbmk at O3 from
the tests because of scalability issues (see Section 5.4).

To investigate this discrepancy more closely, we re-
quested the trained version of ByteWeight used in the
original paper from the authors. Unfortunately, the au-
thors replied that only an untrained version is still
available. Given the uncertainties in attempting to ex-

actly reproduce the training used in the ByteWeight
paper, we instead performed a detailed analysis of the
difference between our test suite, and the tests used in
the ByteWeight paper. This analysis, which we discuss
in Section 6, shows a significant overlap between the
training set and test set used in the original ByteWeight
evaluation. We show that this overlap causes a sig-
nificant bias in evaluation results, which we believe is
responsible for the accuracy discrepancy we observe.
This is worrying, because the ByteWeight test suite has
since been used to evaluate all top-tier work on function
detection through machine learning.

5.2.2. Function Boundaries. Figure 3 and Table 2
show our results for function boundary detection. Recall

gcc x86 gcc x64 clang x86 clang x64 VS x86 VS x64

IDA Pro 6.7 0.98/0.78 0.97/0.74 0.98/0.78 0.98/0.77 0.84/0.93 1.00/0.94
BAP/ByteWeight 0.9.9 0.68/0.83 0.70/0.66 0.52/0.71 0.73/0.49 0.63/0.74 0.69/0.56
Dyninst 9.1.0 0.93/0.91 0.96/0.74 0.98/0.95 0.88/0.72 — —
Nucleus 0.98/0.96 0.98/0.96 0.96/0.97 0.96/0.95 0.86/0.96 0.95/0.94

∆Nucleus `0.00/`0.05 `0.01/`0.22 ´0.02/`0.02 ´0.02/`0.18 `0.02/`0.03 ´0.05/`0.00

(a) SPEC CPU2006 (all binaries, optimization levels O0–O3)

gcc x86 gcc x64 clang x86 clang x64

IDA Pro 6.7 0.93/0.88 0.92/0.86 0.93/0.85 0.91/0.84
BAP/ByteWeight 0.9.9 0.71/0.91 0.78/0.86 0.57/0.84 0.79/0.65
Dyninst 9.1.0 0.91/0.96 0.92/0.85 0.93/0.97 0.87/0.85
Nucleus 0.98/0.98 0.98/0.97 0.99/0.99 0.99/0.96

∆Nucleus `0.05/`0.02 `0.06/`0.11 `0.06/`0.02 `0.08/`0.11

(b) Servers (C only, tested at per-server default optimization ranging from O0–O2)

TABLE 1: Precision/recall for function start detection (average geometric mean). ∆Nucleus shows the
improvement in Nucleus over other approaches.

gcc x86 gcc x64 clang x86 clang x64 VS x86 VS x64

IDA Pro 6.7 0.97/0.71 0.97/0.68 0.98/0.68 0.97/0.68 0.83/0.85 1.00/0.94
BAP/ByteWeight 0.9.9 0.60/0.60 0.63/0.53 0.34/0.34 0.68/0.41 0.40/0.32 0.61/0.40
Dyninst 9.1.0 0.89/0.60 0.91/0.51 0.98/0.75 0.85/0.57 — —
Nucleus 0.97/0.89 0.97/0.90 0.95/0.88 0.94/0.86 0.85/0.84 0.94/0.85

∆Nucleus `0.00/`0.18 `0.00/`0.22 ´0.03/`0.13 ´0.03/`0.18 `0.02/´0.01 ´0.06/´0.09

(a) SPEC CPU2006 (all binaries, optimization levels O0–O3)

gcc x86 gcc x64 clang x86 clang x64

IDA Pro 6.7 0.93/0.83 0.92/0.81 0.93/0.83 0.92/0.82
BAP/ByteWeight 0.9.9 0.67/0.75 0.75/0.74 0.42/0.47 0.77/0.52
Dyninst 9.1.0 0.91/0.79 0.92/0.70 0.93/0.85 0.85/0.74
Nucleus 0.98/0.96 0.98/0.94 0.99/0.97 0.99/0.93

∆Nucleus `0.05/`0.13 `0.06/`0.13 `0.06/`0.12 `0.07/`0.11

(b) Servers (C only, tested at per-server default optimization ranging from O0–O2)

TABLE 2: Precision/recall for function boundary detection (average geometric mean). ∆Nucleus shows
the improvement in Nucleus over other approaches.

from Section 2 that in contrast to function start detec-
tion, which only finds the first address of each function,
function boundary detection involves finding both the
first and the last address. As discussed in Section 3,
Nucleus finds not only function boundaries, but all ba-
sic blocks belonging to each function. Nevertheless, for
comparability with the results of other approaches, we
measured our results for Nucleus by taking the lowest
and highest address found for each function.

As before, Figure 3 graphs the F-scores achieved
for SPEC CPU2006 in various configurations, while
Table 2 decomposes these F-scores into precision and
recall, and additionally shows results for our server
tests. Again, Nucleus consistently outperforms other
approaches, with the exception of IDA Pro on Visual
Studio x64. (As discussed in Section 5.2.1, this is because
Visual Studio uses only one calling convention on x64.)
Nucleus achieves an overall mean F-score of 0.90 for

the SPEC CPU2006 tests, while IDA Pro (the best
performing alternative) yields a mean F-score of only
0.84, even including its extremely good results for Visual
Studio x64. For our server tests (which do not include
C++ code), Nucleus achieves an even higher overall mean
F-score of 0.97.

In addition, the standard deviations in F-score for
Nucleus are lower than those for other approaches,
meaning that Nucleus provides more predictable accu-
racy. Nucleus achieves an average standard deviation
of only 0.02 for C, and 0.04 for C++. In contrast, IDA
Pro, the best performing other approach, has an average
standard deviation of 0.10 for C, and 0.11 for C++. More-
over, Figure 3 shows that Nucleus again achieves more
stable results across compilers and architectures than
other approaches, while better retaining its accuracy for
highly optimized binaries (including optimization levels
O2 and up).

Listing 2 False negative due to tailcall.

00000000005daf10 <rli size so far>:
5daf10: 48 8b 47 08 mov rax,[rdi+0x08]
5daf14: 48 8b 77 18 mov rsi,[rdi+0x18]
5daf18: 48 89 c7 mov rdi,rax
5daf1b: e9 50 fc ff ff jmp 5dab70 <bit from pos>

5.3. Analysis of Results

In Section 2.4, we discussed challenging constructs
for function detection. As shown in Section 5.2, Nucleus
achieves significantly more accurate results than other
approaches. To gain a better understanding of the errors
which do occur in Nucleus, and the tradeoffs compared
to other approaches, we select and manually analyze a
random sample of 100 false positives and false negatives
from our experiments. The sample includes all compilers
and platforms we tested, and covers both our function
start and function boundary detection experiments.

5.3.1. False Positives. As discussed in Section 3, Nu-
cleus uses connected components analysis of the ICFG
to detect functions without assuming anything about
their memory layout, and without requiring any pro-
logue/epilogue signatures. This has several benefits: it
allows Nucleus to be compiler-agnostic, detect non-
contiguous functions, and find unreachable or indirectly
called functions which are missed by signature-based
approaches. The tradeoff is that Nucleus requires switch
analysis and address-taken analysis to correctly handle
intraprocedural indirect jumps.

All of the false positives we analyzed, for ELF as well
as PE binaries, are caused by inaccuracies in resolving
intraprocedural indirect edges. For C binaries, this is due
to unresolved switch edges, which result in isolated case
blocks. When Nucleus finds an isolated basic block, it
flags this block as a possible indirectly called function
entry, thereby producing a false positive. In C++ bina-
ries, false positives are caused by both unresolved switch
edges, and unresolved exception handling edges (again
leading to isolated exception handling blocks). These
results show that more sophisticated switch detection
and exception handling detection, explored in related
work [13], [20], [22], [23], could reduce the false positive
rate in Nucleus.

5.3.2. False negatives. False negatives in Nucleus, for
both function start and function boundary detection,
are caused almost exclusively by tailcalls. In the random
sample we analyzed, tailcalls are responsible for 96% of
false negatives. An example of a tailcall causing a false
negative is shown in Listing 2.

In a tailcall, a function (0x5daf10 in Listing 2) ends
with a jmp to another function (0x5dab70). This is an
optimization frequently used by compilers—instead of
inserting a call instruction at the end of a function,
the compiler instead uses a jmp to remove the need for
two subsequent ret instructions. Recall from Section 3

Listing 3 False negative due to fallthrough from non-
returning call.

44a36b: mov edi,0x628882
44a370: mov esi,0x213
44a375: mov edx,0x62888e
44a37a: call 47ce90 <fancy abort>
44a37f: nop

000000000044a380 <cfg layout initialize>:
44a380: push rax
44a381: mov edi,0x20
44a386: call 444970 <alloc aux for blocks>

that Nucleus starts by looking for functions that are
directly called, and then expands these by following con-
trol flow edges. Function 0x5dab70 is never reached by a
direct call, and is therefore not found in this first phase.
However, 0x5daf10 is called directly. When expanding
function 0x5daf10, Nucleus follows the tailcall edge to
0x5dab70, merging the two functions and producing a
false negative.

This produces false negatives only if the tailcalled
function (the tailcallee) is never called directly. If it
is, then it is found in the first analysis phase, and the
problem does not occur. We have also seen cases where
the tailcallee is called directly (by another function than
the tailcalling function), but the tailcaller is never called
directly. To prevent function merging in these cases, Nu-
cleus does not expand functions along inbound edges to
directly called entry points (i.e., for directly called basic
blocks the connected components analysis is directed
rather than undirected).

Tailcalls are the main cause of false negatives in
both function start and function boundary detection.
For function boundary detection, a single tailcall can
cause two false negatives: (1) a wrong start address
for the tailcallee, and (2) a wrong end address for the
tailcaller.

In some cases, merged functions are closely related,
and the function performing the tailcall is merely a
stub that sets up a parameter and performs the tailcall.
Nucleus classifies such cases as multi-entry functions.
Arguably, this could be considered correct. However, we
count such cases as false negatives because the symbolic
information specifies the merged functions as separate.

In most cases, the tailcaller and tailcallee are in
distinct memory ranges. As such, extending Nucleus
with the assumption that functions are contiguous in
memory could remove these false negatives on platforms
where this assumption holds. In this work, we chose not
to add this assumption to Nucleus, as our aim is to
show that Nucleus achieves accurate function detection
without such assumptions.

As Nucleus does not currently implement detection
for non-returning functions, it must assume that a call

to such a function can return normally. This can cause
false negatives, if a call to a non-returning function
directly precedes another function that is itself never
called. We show an example in Listing 3. Here, there

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 10000 100000 1x106

ru
n

ti
m

e
 (

s
)

instructions

Nucleus

Dyninst 9.1.0

IDA Pro 6.7

BAP/ByteWeight 0.9.9

Figure 4: Runtime performance for function
boundary detection. The x-axis (number of in-
structions) is logarithmic.

is a call instruction at address 0x44a37a that targets
a non-returning function (fancy abort). Directly after
the call is the start of another function, at 0x44a380.
Since this function is never called directly, it is merged
into the preceding function through the fallthrough edge
from the call. This case is responsible for 4% of false
negatives in our analysis, and again occurs only if the
function after the non-returning call is itself never
called from any direct call site.

5.4. Runtime Performance

Figure 4 compares the runtime performance for Nu-
cleus to other approaches. The measured runtimes in-
clude not only the function detection phases, but also
the disassembly and (I)CFG analysis phases of all com-
pared tools. Nucleus is among the fastest of the com-
pared approaches, providing runtime performance com-
parable with Dyninst, and completing all of its analysis
in under 20 seconds even for binaries with code sections
in the order of 1 ˆ 106 instructions. Both Nucleus and
Dyninst scale roughly linearly. IDA Pro performs a more
extensive analysis phase for each binary, and therefore
requires 45 seconds to process the largest binary. Note
that for BAP/ByteWeight, we were forced to exclude the
largest binary (xalancbmk at O3) from our tests due to
scalability issues, which can be observed from the steep
increase in runtime for BAP/ByteWeight for increasing
binary size.

6. Analysis of Machine Learning in Func-

tion Detection

Several recent papers have investigated the use of
machine learning techniques to automatically learn sig-
natures for function recognition. Bao et al. use a machine
learning system (ByteWeight) to construct a weighted
prefix tree of known code sequences that delineate func-
tions [11], while Shin et al. train Neural Networks to

Start Boundary
p r F p r F

ByteWeight [11]§ 0.97 0.97 0.97 0.93 0.93 0.93
Neural Nets [12]§ 0.99 0.99 0.99 0.97 0.94 0.95
Nucleus: 0.96 0.94 0.95 0.96 0.88 0.92

TABLE 3: Precision/recall/F-scores for function
start and boundary detection (average scores for
the test suite of Bao et al. [11]). : Nucleus results
are for gcc, clang and Visual Studio. § Bao et
al. [11] and Shin et al. [12] results are for gcc, icc

and Visual Studio.

recognize functions [12]. Both of these papers report
extremely accurate results.

Unfortunately, Shin et al. have not released an open-
source version of their system, preventing us from di-
rectly comparing it with Nucleus. ByteWeight is avail-
able open-source, and is used for function detection
in recent BAP versions [10]. The results for our tests
with this version of ByteWeight (which we refer to
as BAP/ByteWeight) are reported in Section 5.2. As
described there, we were unable to reproduce the per-
formance reported by Bao et al. for this ByteWeight
version. For instance, our BAP/ByteWeight tests with
gcc on x64 produced a mean F-score for function start
detection of only 0.65, which is 0.32 points lower than
the result presented in the original ByteWeight paper.

As mentioned in Section 5.2.1, we additionally re-
quested the trained ByteWeight version tested in the
original paper by Bao et al., in order to run it on
our own test suite. Unfortunately, the authors were
unable to provide us with this version of ByteWeight,
as they did not retain the trained ByteWeight version
used for their tests. We therefore provide an additional
comparison of Nucleus against the results as presented
by Bao et al. and Shin et al. in their respective pa-
pers (Section 6.1). Subsequently, we provide an in-depth
analysis of the reasons for the diminished performance
we observed in BAP/ByteWeight (Section 6.2). This
analysis reveals inadvertent methodological errors in the
evaluations of both Bao et al. and Shin et al., which
cause a strong bias in the test suite they used for
evaluation. This bias provides a likely explanation for
the observed performance discrepancy.

6.1. Function Detection Performance

Table 3 compares the function detection results
achieved in Nucleus to those presented by Bao et al. and
Shin et al. Both machine learning papers use the same
test suite, which consists of coreutils, binutils and
findutils, and a number of Windows applications (see
Section 6.2). We repeated our experiments with Nucleus
for this same test suite, the only difference being that
Nucleus is evaluated on gcc, clang, and Visual Studio,
while both Bao et al. and Shin et al. evaluated on gcc,
icc and Visual Studio.

The table shows that Nucleus achieves F-scores com-
parable to those presented by Bao et al. and Shin et al.
For function start detection, the precision, recall and F-
scores for the different approaches are within 0.05 points
from each other. The function boundary detection scores
are also comparable—Nucleus achieves higher precision
than ByteWeight (fewer false positives), though with
slightly lower recall (more false negatives). The overall
F-scores are within 0.03 points from each other.

Though Nucleus performs well on the test suite used
by Bao et al. and Shin et al., we opted to use our own
test suite for our main evaluation. The reasons for this
choice are explained in Section 6.2, which provides an in-
depth analysis of the differences between our test suite
and the tests done by Bao et al. and Shin et al.

6.2. Evaluation Methodology

As mentioned in Section 6, we observed a large
discrepancy in the results achieved by ByteWeight on
our own SPEC-based test suite compared to the results
reported in the ByteWeight paper [11]. The mean F-
score was 0.32 points lower than expected, and this ob-
servation persisted across gcc, clang and Visual Studio.
It also persisted across different versions of gcc, rang-
ing from version 4.7 (used in the original ByteWeight
evaluation) to version 5.1.1.

Upon closer inspection of the test suite used by Bao
et al. to evaluate ByteWeight, we found that it contains
many binaries with large amounts of common functions.
In the remainder of this section, we show that this leads
to a large bias in the results reported by Bao et al., due
to a significant overlap between training set and test set.
This is problematic, because ByteWeight is a machine
learning approach, and thus the validity of its evaluation
relies on a strong separation between training and test
binaries. Moreover, the exact same problem occurs in the
Neural Network-based approach by Shin et al., as they
used the same evaluation test suite as Bao et al. for their
own evaluation.

6.2.1. Test Suite for ELF Binaries. Bao et al. build
their ELF test suite (for gcc and icc) from three popu-
lar open-source binary suites: coreutils, binutils and
findutils. These contain 106, 16 and 7 binaries, respec-
tively. Though all of these binary suites contain large
amounts of shared code, we focus here on coreutils,
as it comprises the majority of the Linux test suite. We
perform our analysis on the binaries as compiled and
used by Bao et al., which they make available online.4

We focus our discussion here on the binaries compiled
at optimization level O0, but we verified that the same
effects occur at all optimization levels up to O3.

The coreutils binaries, as compiled by Bao et
al. with gcc at O0, contain 1839 unique functions, dis-
tributed over 106 binaries (excluding PLT stubs and

4. http://security.ece.cmu.edu/byteweight/

commonly named functions like main). There are 102
functions which occur in at least 90% of these binaries—
mostly utility functions such as xmalloc and quotearg.
We took a random subset of 50 such functions, com-
paring 2 randomly selected binaries for each function.
In each case, the function body was shared verbatim
between binaries, the only difference being in code ad-
dresses (which are normalized by ByteWeight).

Moreover, 87 functions occur in all binaries.5 Since
the average coreutils binary has 160 functions, this
means that for the average binary, if selected for the
test set, 54% of its functions are guaranteed to occur
in the training set. The three binaries with the most
functions are mv, ginstall and vdir (388, 358 and 355
functions, respectively). Thus, even these binaries share
nearly 25% of their functions with all other coreutils

binaries. The largest degree of overlap is found in true

and false; 94% of their functions are guaranteed to
occur in the training set. In contrast, the average binary
in our own SPEC-based test suite contains less than 1%
of such shared functions (the ones that are present are
bootstrap functions such as start).

The average coreutils binary shares 94% of its
functions with at least one other binary in the test suite.
This is because many coreutils binaries are extremely
simple, often having only a main and usage function in
addition to the shared utility functions.

Both Bao et al. and Shin et al. use 10-fold cross
validation in their evaluations. This means that the set
of binaries B is divided into two sets BE and BT , such
that BE Y BT “ B. BT consists of 90% of the binaries,
and is used for training the system. The trained system
is then evaluated on BE , which contains the remaining
10% of binaries. This is repeated 10 times, such that
each binary occurs in BE exactly once.

To determine the precise probability of overlap be-
tween binaries in BE and BT , let bf and cf be two
binaries that share the same function f . bf has an 11{106
probability of being chosen for BE . Supposing that bf P
BE , cf will be in BT with probability 95{105 « 0.91.
Given that the average coreutils binary shares 94% of
its functions with at least one other binary, this means
that for the average binary in BE a fraction of at least
0.94 ˆ 0.91 « 0.86 (86%) of its functions are expected
to occur in BT .

6.2.2. Test Suite for PE Binaries. A similar situ-
ation occurs in the PE test suite used by both Bao et
al. and Shin et al. for testing Visual Studio. For space
reasons, we simply report the number of related binaries
in the PE suite, rather than repeating the argument
made for the ELF tests.

The PE test suite contains a total of 17 applica-
tions, from 7 open-source projects: putty, 7zip, vim,
libsodium, libetpan, HID API, and pbc. Out of these,

5. Except make-prime-list, which shares less code than other
coreutils binaries

http://security.ece.cmu.edu/byteweight/

7 applications belong to the putty project: pageant,
plink, pscp, psftp, putty, puttygen and puttytel. All
of these share a common code base. Related applications
are also found for the 7zip project (3 related), vim (2
related) and libetpan (2 related). Overall, only 3 of the
applications in the PE test suite do not have a relative
that also occurs in the test suite.

In summary, it is clear that both the ELF and PE
test suites used by Bao et al. and Shin et al. cause a
strong bias in their evaluation results, preventing us
from directly comparing these results to Nucleus. We
believe this bias is the most likely explanation for the
drop in accuracy when testing ByteWeight on our own
test suite. Unfortunately, given this bias, the results
presented by Bao et al. and Shin et al. cannot currently
be assumed to generalize. Thus, further research in this
area is needed to reassess the viability of machine learn-
ing for function detection.

7. Discussion

Previous work has shown that in existing approaches,
function detection is among the most compiler-specific
and error-prone stages of the binary analysis process. To
the best of our knowledge, Nucleus is the first approach
which shows that accurate function detection can be
achieved in a completely compiler-agnostic way, with
significantly fewer false positives and false negatives
than existing work. This enables function detection for
binaries compiled with new or unknown compilers, and
eliminates the need for maintaining signature databases.

We show in Section 6 that existing work, which aims
to reduce maintenance costs through machine learn-
ing [11], [12], suffers from a significant evaluation bias
due to overlapping training and test sets. In principle,
it should be possible for these approaches to match the
accuracy of other signature-based approaches, such as
IDA Pro. Unfortunately, the question of whether or not
they can exceed this accuracy remains to be answered
in future work. While machine learning approaches do
succeed in their aim to reduce manual maintenance, Nu-
cleus eliminates maintenance completely, while achiev-
ing higher accuracy than any of the other approaches
that we tested.

To demonstrate the generality of Nucleus, in this
work we have limited our assumptions on function struc-
ture to a minimum. We assume only that intraprocedu-
ral control transfers follow a different general pattern
than interprocedural control flow. In contrast, existing
work, including machine learning approaches, inherently
relies on compiler-specific function prologue and epi-
logue patterns [11]–[13], which are not always present
at high optimization levels.

Section 5.3 shows that most false negatives in Nu-
cleus (resulting from tailcalls) can be eliminated if it
can be assumed that functions are laid out contigu-
ously in memory. Although we opted not to make this
assumption in this paper, the open source version of

Nucleus contains a command-line option to enable this
assumption when it is known that functions are con-
tiguous. We stress that this feature is strictly optional;
it is not required by Nucleus, and is disabled in all tests
presented in this paper.

Since the vast majority of false positives are a result
of unresolved indirect intraprocedural control transfers
(Section 5.3), Nucleus directly benefits from advances
made in switch detection and reverse engineering of
exception handling constructs [13], [20], [22], [23].

Though Nucleus does not explicitly target malware
or obfuscated binaries, its lack of assumptions on low-
level code structure enable Nucleus to handle some
common types of obfuscations more accurately than
signature-based work. For instance, Nucleus is agnos-
tic to instruction-level polymorphism, and to obfusca-
tors that intentionally rewrite function prologues and
epilogues to non-standard variants [24]. Additionally,
Nucleus provides inherent support for finding indirectly
called functions, making it immune to obfuscations that
obscure function calls by using branching functions, or
transforming direct calls to indirect calls [25], [26]. We
chose not to evaluate these aspects of Nucleus, due to
the large variety of obfuscation techniques used in prac-
tice and the lack of ground truth for malware samples.
Instead, we defer proper handling of obfuscated malware
to related work on deobfuscation, which can be used in
unison with Nucleus [24], [26].

For compilers which emit highly predictable func-
tion patterns, our results show that traditional
signature-based approaches perform extremely well
(Section 5.2.1). In our tests, this was only the case for Vi-
sual Studio on x64, where IDA Pro took full advantage of
the predictability in calling convention. However, as our
results also show, the majority of compilers use a variety
of calling conventions and function prologue/epilogue
patterns, causing a decline in the accuracy of signature-
based approaches. In all these cases, Nucleus provides
significantly higher accuracy.

8. Related Work

Previous work has used machine learning to auto-
matically generate signature databases, reducing main-
tenance costs by eliminating the need for manually
crafted signatures [11], [12]. However, these approaches
still require a learning phase for every new compiler ver-
sion, and cannot handle unknown compilers. In contrast,
Nucleus is completely compiler-agnostic, and is a zero-
maintenance approach.

Concurrent work has explored graph-based function
detection for the ARM Thumb architecture [27]. While
this graph-based approach shares some principles with
Nucleus, it operates from different assumptions, such as
the assumption that functions are laid out contiguously
in memory.

Signature-based function detection is currently used
in all major disassemblers [2], [10], [13], [20], [28]. Several

papers have measured the accuracy of binary analysis
and disassembly techniques, finding function detection
to be significantly more inaccurate than other prim-
itives such as instruction or CFG recovery [9], [29].
At the same time, function detection is a widely used
primitive in binary analysis, ranging from binary-level
Control Flow Integrity [5], [7], [8], [23], [30], [31] to
automatic vulnerability detection [3], [4], binary instru-
mentation [1], [2], and manual binary analysis [15], [16].
Thus, our results for Nucleus facilitate work in a large
range of binary analysis applications.

Our approach to disassembly is based on linear dis-
assembly with fault correction. Similar approaches have
been explored in the context of high-coverage Control
Flow Integrity [30], deobfuscation [26], and binary in-
strumentation [1], [32]. In all these cases, linear disas-
sembly results have proven extremely accurate, a finding
confirmed in recent work on disassembly accuracy [9].

9. Conclusion

This work has shown that compiler-agnostic function
detection can achieve high accuracy. We have shown
that Nucleus, our function detection approach, pro-
vides significantly more accurate results than existing
approaches in terms of both function start and func-
tion boundary detection, without making any compiler-
specific assumptions. Nucleus provides inherent han-
dling of complex cases such as non-contiguous and multi-
entry functions, and functions with unknown prologues
or epilogues, which are not handled in current signature-
based work. Moreover, we have found a significant bias
in the evaluations of existing approaches that aim to re-
duce maintenance costs for function signature databases
through machine learning, showing the need for future
work to reassess the viability of these approaches. In
addition to achieving more accurate results than existing
work, Nucleus is zero-maintenance, supporting new or
unknown compilers without any additional effort. We
provide Nucleus open-source, including the option to
transfer results to IDA Pro, making Nucleus straight-
forward to use in real-world environments.

References

[1] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“PEBIL: Efficient Static Binary Instrumentation for Linux,”
in ISPASS, 2010.

[2] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary
instrumentation,” in PASTE, 2011.

[3] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-Architecture Bug Search in Binary Executables,” in
S&P, 2015.

[4] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “dis-
covRE: Efficient Cross-Architecture Identification of Bugs in
Binary Code,” in NDSS, 2016.

[5] D. Andriesse, V. van der Veen, E. Göktaş, B. Gras, L. Sam-
buc, A. Slowinska, H. Bos, and C. Giuffrida, “Practical
Context-Sensitive CFI,” in CCS, 2015.

[6] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuf-
frida, “StackArmor: Comprehensive Protection from Stack-
Based Memory Error Vulnerabilities for Binaries,” in NDSS,
2015.

[7] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zou, “Practical control-flow integrity
and randomization for binary executables,” in S&P, 2013.

[8] A. Prakash, X. Hu, and H. Yin, “vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries,” in NDSS,
2015.

[9] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and
H. Bos, “An In-Depth Analysis of Disassembly on Full-Scale
x86/x64 Binaries,” in USENIX Sec, 2016.

[10] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP:
A Binary Analysis Platform,” in CAV, 2011.

[11] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“BYTEWEIGHT: Learning to Recognize Functions in Binary
Code,” in USENIX Sec, 2014.

[12] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing Func-
tions in Binaries with Neural Networks,” in USENIX Sec,
2015.

[13] C. Eagle, The IDA Pro Book: The Unofficial Guide to the
World’s Most Popular Disassembler, 2nd ed., 2011.

[14] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross,
D. Plohmann, C. Dietrich, and H. Bos, “P2PWNED: Model-
ing and Evaluating the Resilience of Peer-to-Peer Botnets,”
in S&P, 2013.

[15] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86
Decompilation Using Semantics-Preserving Structural Analy-
sis and Iterative Control-Flow Structuring,” in USENIX Sec,
2013.

[16] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith,
“No More Gotos: Decompilation Using Pattern-Independent
Control-Flow Structuring and Semantics-Preserving Trans-
formations,” in NDSS, 2015.

[17] T. Koju, R. Copeland, M. Kawahito, and M. Ohara, “Re-
constructing High-level Information for Language-specific Bi-
nary Re-optimization,” in CGO, 2016.

[18] N. A. Quynh, “Capstone: Next-Gen Disassembly Frame-
work,” in Blackhat USA, 2014.

[19] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of
Executable Code Revisited,” in WCRE, 2002.

[20] J. Kinder, “Static Analysis of x86 Executables,” Ph.D. dis-
sertation, Technische Universität Darmstadt, 2010.

[21] Microsoft Developer Network, “Overview of x64 Calling Con-
ventions,” 2015, https://msdn.microsoft.com/en-us/library/
ms235286.aspx.

[22] I. Skochinsky, “Compiler Internals: Exceptions and RTTI,” in
RECON, 2012.

[23] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song,
“VTint: Protecting Virtual Function Tables’ Integrity,” in
NDSS, 2015.

[24] H. Säıdi, P. Porras, and V. Yegneswaran, “Experiences in
Malware Binary Deobfuscation,” 2010.

[25] C. Linn and S. Debray, “Obfuscation of Executable Code to
Improve Resistance to Static Disassembly,” in CCS, 2003.

[26] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static
Disassembly of Obfuscated Binaries,” in USENIX Sec, 2004.

[27] M. A. Ben Khadra, D. Stoffel, and W. Kunz, “Speculative
Disassembly of Binary Code,” in CASES, 2016.

https://msdn.microsoft.com/en-us/library/ms235286.aspx
https://msdn.microsoft.com/en-us/library/ms235286.aspx

[28] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna, “Firmalice - Automatic Detection of Authentica-
tion Bypass Vulnerabilities in Binary Firmware,” 2015.

[29] B. P. Miller and X. Meng, “Binary Code is Not Easy,” 2015,
technical report, University of Wisconsin-Madison.

[30] M. Zhang and R. Sekar, “Control Flow Integrity for COTS
Binaries,” in USENIX SEC, 2013.

[31] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and
M. Franz, “Opaque Control-Flow Integrity,” in NDSS, 2015.

[32] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A Platform
for Secure Static Binary Instrumentation,” in VEE, 2014.

	Introduction
	Contributions
	Outline

	Background
	Definition of Function Detection
	Scope of Function Detection
	Signature-Based Approaches
	Challenging Cases

	Overview
	ICFG Generation
	Connected Components Analysis
	Directly Called Functions
	Unreachable/Indirectly Called Functions

	Implementation
	Disassembly and ICFG Generation
	Switch Detection
	Function and Entry Point Detection

	Evaluation
	Test Setup
	Function Detection Results
	Function Starts
	Function Boundaries

	Analysis of Results
	False Positives
	False negatives

	Runtime Performance

	Analysis of Machine Learning in Function Detection
	Function Detection Performance
	Evaluation Methodology
	Test Suite for ELF Binaries
	Test Suite for PE Binaries

	Discussion
	Related Work
	Conclusion
	References

